Characterization of phenolic profile alterations in metal-polluted bee pollen via capillary electrophoresis

Enrique Mejías¹², Carlos J. Gómez³, Pierre Gareil⁴⁵, Nathalie Delaunay⁴⁵, and Gloria Montenegro⁶

¹Universidad Tecnológica Metropolitana UTEM, Vicerrectoría Académica, Dirección de Investigación y Desarrollo Académico. Santiago, Chile.
²Universidad Tecnológica Metropolitana, UTEM, Facultad de Ciencias Naturales Matemática y Medio Ambiente, Departamento de Biotecnología. Santiago, Chile.
³Technical Governance, Metals & Minerals, Bureau Veritas Chile. Santiago, Chile.
⁵Centre National de la Recherche Scientifique (CNRS), Unités Mixtes de Recherche (UMR) 7195. Paris, France.
⁶Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales. Santiago, Chile.

Abstract

E. Mejías, C.J. Gómez, P. Gareil, N. Delaunay, and G. Montenegro. 2018. Characterization of phenolic profile alterations in metal-polluted bee pollen via capillary electrophoresis. Cien. Inv. Agr. 45(1): 51-63. Bee pollen is a conglomerate of plant pollens, and its nutritional contents include bioactive compounds with antioxidant/antiradical potentials. These potentials are conditioned by botanical origin. In Chile, the native flora is diverse and promising in terms of bioactive compounds, but many plants grow in metal-polluted areas. The associated bioaccumulation could negatively affect the antioxidant/antiradical abilities of bee pollen. To assess the relationship between the bioaccumulation of metals and the antioxidant activity of pollen, complete bee pollen was collected near and far from the Llaima Volcano, albeit in ranges that ensured the same botanical origins. Mellisopalyinological analysis determined Escallonia rubra pollen was the most abundant native flora in complete bee pollen. Therefore, E. rubra pollen collected near and far from the Llaima Volcano was evaluated for the following: phenolic compounds via colorimetric assays; antioxidant activity via ferric reducing/antioxidant power assays; antiradical activity via 1,1-diphenyl-2-picrylhydrazyl radical assays; and metal contents via inductively coupled plasma optical emission spectrometry. Llaima samples had higher Cu and Fe but lower Mn contents and lower antioxidant and antiradical capacities than did the control samples. These results were supported by subsequent fortification assays in Llaima E. rubra samples. In fortified samples with significantly higher metal contents, antiradical and antioxidant abilities decreased. Moreover, shifts in migration times were found for naringenin, rutine, and caffeic acid after capillary electrophoresis (CE) analysis in fortified samples. In conclusion, the results indicated an inverse correlation between metal contents and antioxidant/antiradical potentials in bee pollen.

Keywords: Antioxidant, antiradical activity, capillary electrophoresis, metals, phenol
Introduction

Bee pollen is a conglomerate of plant pollen that is combined in the corbicula, a special cavity on the hind legs in honeybees (*Apis mellifera*) (Montenegro et al., 2013). The quantity of water in bee pollen varies between 4 and 10%, and this water content ensures good preservation over time and the nondegradation of organic compounds, which consequently maintain original inherent properties (Gergen et al., 2006; Nogueira et al., 2012).

The chemical composition of bee pollen varies according to the plant origin, geographical location, and environmental conditions (Komosinska-Vassev et al., 2015; Nogueira et al., 2012). Despite the variations, bee pollen is normally acidic, with a pH between 3.4 and 5.1, and composed of 20% proteins (including essential amino acids), 55% total carbohydrates with 25% reducing sugars (primarily fructose and glucose), 5% lipids, 1.6% phenolic compounds, 0.7% vitamins, and 1.6% bioelements (macro and micronutrients) (Campos et al., 2008; Komosinska-Vassev et al., 2015; Nogueira et al., 2012). Of the metals, the most predominant are iron, magnesium, manganese, copper, zinc, calcium, sodium, and potassium (Vit and Santiago, 2008). Considering this diverse composition, bee pollen is a nutritional supplement with a variety of properties that can be determined from the chemical nature of the compounds within bee pollen (Taha, 2015; Yang et al., 2013). One important group of compounds is polyphenols, which are directly related to the antioxidant capacity of several bee pollens (Denisow and Denisow-Pietrzyk, 2016).

The three most important groups of compounds with antioxidant properties in bee pollen are flavonoids, phenolic acids, and tannins (Mârghitaş et al., 2009; Pascoal et al., 2014). The mechanisms of antiradical activity are different according to the chemical structure of each compound (Denisow and Denisow-Pietrzyk, 2016). In bee pollen, these compounds act together as antioxidants, with each contributing toward the total activity (Almaraz-Abarca et al., 2007; LeBlanc et al., 2009; Leja et al., 2007; Rzepecka-Stojko et al., 2015). Usually, the total polyphenol content, antioxidant activity, and antiradical activity are related to the physiological and bioactive roles of substances in terms of human nutrition (Kroyer and Hegedus, 2001).

The chemical profiles of natural extracts obtained from a complex organic matrix, such as pollen or honey, have traditionally been determined through chromatographic techniques (e.g., HPLC, FTIR, HPLC-UV, and HPLC-MS) (Dominguez et al., 2016; Liang et al., 2016). Nevertheless, capillary electrophoresis (CE) and related techniques, such as electrokinetic chromatography, are interesting alternatives because they possess several advantages, including decreased analysis time, high separation efficiency, ultra-small sample volume, and low reagent consumption (Arráez-Román et al., 2006; Moreno-González et al., 2014; Nicolaou and Kapnissi-Christodoulou, 2010; Rizelio et al., 2012).

Several apiculture products, such as honey, pollen, and propolis, are suitable materials for monitoring environmental contamination (Formicki et al., 2013; González-Martín et al., 2015). This attribute is due to the direct contact that honeybees have with environmental contaminants during flight and through food sources (e.g., plant pollen, nectar, and water) (Lambert et al., 2012; Przybyłowski and Wilczyńska, 2001). Because the botanical origin is the primary conditioner for the composition of apiculture products, any contaminating compounds can likely be traced to the originating plant species (Almeida-Muradian et al., 2005; Campos et al., 2008). Several studies have assessed contaminants in honeys, including antibiotics (Al-Waili et al., 2012), heavy metals (Fredes and Montenegro, 2006; Tuzen et al., 2007), pesticides (Panseri et al., 2014; Rodriguez López et al., 2014), and others (Cortopassi-Laurino et al., 2006; Lambert et al., 2012). Volcanic activity can also affect the mineral composition of honeys and pollens produced in nearby areas (Mejías and
Montenegro, 2012). Despite these links, pollen is an understudied apiculture product in terms of its chemical composition, biological activity, and possible contaminants.

The aim of this study was to assess the relationship between bioaccumulation of metals and the effect on the antioxidant activity of native pollen samples. The first step determined the botanical origins of bee pollen collected in an area affected by volcanic activity and consequently metal pollution. Immediately after this determination, the most predominant Chilean native species detected in the assessed bee pollen was isolated and subsequently evaluated via CE and mass spectrophotometry to determine the phenolic contents. The selected native samples were also fortified by aliquots of certified reference materials for lead (Pb), cadmium (Cd), and chromium (Cr). Electropherograms from the fortified and control groups were then compared to established behavioral differences in phenolic compounds as a result of increased metal presence.

Materials and methods

Pollen samples

Pollen samples were collected near the town of Vilcún in the Araucanía Region of southern Chile (38°41’59.80” S, 71°45’22.70” W). Samples were obtained near or distant from (>30 km) the Llaima Volcano, with these samples constituting the Llaima and control groups, respectively. Importantly, both collection areas contained the same botanical species. Complete bee pollen samples were collected from five beehives located in each sampling zone.

Mellisopalynological analysis for determining the botanical origin of bee pollen

The botanical composition of bee pollen samples was quantitatively counted following methods described by Louveaux et al. (1978). Briefly, bee pollen (20 g) was placed on acetolyzed slides (Montenegro et al., 2008). Then, a sample aliquot was diluted with warm distilled water (20 mL at 40 °C), and the solution was transferred to an appropriate tube and centrifuged at 3,500 rpm for 10 min. The supernatant was discarded, and the pollen residue was deposited at the bottom of the tube for re-suspension in distilled water (100 mL). An aliquot (20 mL) was then added to a slide with Calberla’s solution (10 mL), which was either basic fuchsin or diamond. The slide was gently dried. Finally, melted glycerinated gelatin (15 mL) was added to the mixture. For each sample, pollen grain residues were identified using an optical microscope at 400X and 1000X magnifications. Both the Llaima and control samples were analyzed using the above criteria.

Preparation of E. rubra pollen solutions

Mellisopalynological analysis revealed Escallonia rubra to be a primary component (45%, Table 1) of the collected bee pollen samples. This species belongs to the native endemic flora of Chile and in this case, was the primary native component of the selected bee pollen samples Therefore, E. rubra pollen was isolated from every collected pollen sample and solutions prepared for subsequent colorimetric, ferric reducing/antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), metal content, and CE assays. Specifically, E. rubra pollen (2 g) was suspended in distilled water (4.0 mL, pH 4) and then vortexed. The pH range for all suspensions was between pH 4.8 and 5.5.

Colorimetric assays for determining Total Phenolic Compounds

The procedures described by Singleton and Rossi (1965) and Buratti et al. (2007) were used with minor modifications. Briefly, E. rubra pollen solution (200 µL) was mixed with the Folin-Ciocalteu reagent (50 µL) and 20% Na₂CO₃ (150 µL). Finally,
distilled water (600 µL) was added. Absorbance at 765 nm was determined after 30 min in a Shimadzu (Brazil) UV-1700 UV-visible spectrophotometer. Gallic acid was used as the standard to derive the calibration curve (0-150 mg mL\(^{-1}\)). The results revealed the phenolic contents of E. rubra pollen (expressed as the mg equivalent of gallic acid kg\(^{-1}\) of sample). All samples were analyzed in triplicate.

FRAP assays for determining antioxidant activity

FRAP assays were performed according to Bertoncelj et al. (2007). Briefly, the FRAP reagent was prepared by mixing 2.5 mL of 2,4,6-tripyridyls-triazine (TPTZ; 10 mM TPTZ 40 mM\(^{-1}\) HCl) with 2.5 mL of 20 mM FeCl\(_3\). Then, 0.3 M acetate buffer (25.0 mL, pH 3.6) was added to the mixture. The FRAP reagent was freshly prepared for each assay run. To measure antioxidant capacity, E. rubra pollen (0.200 mL) was mixed with the FRAP reagent (1.8 mL). Absorbance was read at 593 nm after 10 min. FeSO\(_4\)•7H\(_2\)O was used as the standard to derive the calibration curve (50-1000 mM). The values are expressed as mM Fe\(^{+2}\) equivalents g\(^{-1}\) of sample. Samples were analyzed in triplicate.

DPPH assays for determining antiradical activity

The procedures described by Meda et al. (2005), as modified by Mejías and Montenegro (2012), were used to determine antiradical activity. The DPPH assay establishes the antiradical properties of the chemical compounds in pollen by inhibiting or decreasing the oxidant activity of DPPH. Briefly, E. rubra extracts (750 µL) were mixed with the DPPH radical (1.5 mL) in methanol (0.02 mg DPPH mL\(^{-1}\) MeOH). Absorbance was read at 517 nm after 15 min. A blank sample was prepared with methanol. Ascorbic acid (Calbiochem, Germany) was used as the standard to derive the calibration curve (1-10 mg mL\(^{-1}\)). The values for antiradical activity are expressed as mg of ascorbic acid equivalents/g of sample. Samples were analyzed in triplicate.

Determining metal contents

Heavy metal contents in E. rubra pollen samples were determined following protocols defined in the Chilean standard (INN, 2008). Briefly, E. rubra pollen (5 g) was placed in a porcelain crucible that was subsequently placed in a muffle crucible that was placed on a heating plate at 50 °C for 30 min. Subsequently, aliquots of acid (2 mL) were added to prevent boiling. The aliquots were added until achieving total dissolution of the sample or the absolute disappearance of turbidity inside the crucible. The excess acid was evaporated until the sample was completely dried. Finally, the residue in the crucible was resuspended in 2% HNO\(_3\) (10 mL), and the resulting solution was fully transferred to a volumetric flask (10 mL) for further readings via inductively coupled plasma optical emission spectrometry.

Fortification assays

Escallonia rubra pollen samples were fortified using the certified reference material CMR-CMQ-FCHILE-007 lot No. 012 bottle No. 006. The manufacturer reported concentrations of this material as follow: Pb 49 µg L\(^{-1}\), Cr 36 µg L\(^{-1}\) and Cd 32 µg L\(^{-1}\). Escallonia rubra pollen samples collected near the Llaima Volcano were fortified in increasing order of concentration with certified reference material aliquots of Pb, Cr, and Cd. For this fortification, the pollen samples were separated into five subsample groups (termed A1, B1, C1, D1, and E1), each containing 500 mg of pollen. The A1-D1 subsample groups received certified reference material aliquots, with the weights recorded to establish the final concentration for each
metal in µg kg⁻¹. The E1 group was not fortified and was used as the control sample.

Capillary electrophoresis with diode-array detection for determining phenolic contents

Capillary electrophoresis with diode-array detection (CE-DAD) experiments were performed at the Laboratoire de Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA)-Chimie ParisTech (École Nationale Supérieure de Chimie de Paris). Specifically, an Agilent G1600A Capillary Electrophoresis System equipped with an on-column diode-array detection system was used. Instrument conditions were set according to Nicolaou and Kapnissi-Christodoulou (2010). Briefly, the fused silica capillaries had internal diameters of 50 µm, a total length of 64 cm, and an effective length of 55 cm. New capillaries were rinsed with water for 10 min, followed by 1 M NaOH for 1 h, water again for 20 min, and finally a background electrolyte (i.e., 0.1 M sodium tetraborate decahydrate) for 15 min. Samples were injected by applying a pressure of 50 mbar for 5 s. The separation voltage was 25 kV.

Statistical analyses

Exploratory data analyses were performed to evaluate patterns, detect anomalous values, and verify assumptions of statistical tests, including normality, independence, and homoscedasticity. Differences in phenol contents, antioxidant activity, and FRAP values between Llaima and control samples were established via one-way ANOVA with a post hoc Tukey’s test.

Results

Botanical origin of bee pollen

Mellisopalynological analysis was used to separate and identify the distinct plant pollens in complete bee pollen collected near the Llaima Volcano (Table 1). Based on the results, the most abundant native pollen was that of E. rubra, which was chosen for subsequent determinations of antioxidant properties and phenolic compound profiles via CE.

Composition of Total Phenolic Compounds of E. rubra pollen

Colorimetric analyses using the Folin-Ciocalteu reagent revealed no statistically significant differences in total hydrosoluble phenolic compounds between Llaima and control samples (Table 2). However, the control samples had 32% and 25% higher antioxidant and antiradical capacities, respectively, than did the samples collected near the Llaima Volcano (Table 2).

Table 1. Abundance estimations for different plant species in bee pollen samples collected near the Llaima Volcano.

<table>
<thead>
<tr>
<th>Botanical origin</th>
<th>Amount (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lotus uliginosus</td>
<td>52</td>
</tr>
<tr>
<td>Escallonia rubra</td>
<td>45†</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>1</td>
</tr>
<tr>
<td>Embothrium coccineum</td>
<td><1</td>
</tr>
<tr>
<td>Rubus sp.</td>
<td><1</td>
</tr>
</tbody>
</table>

†As a native plant species and primary component of the total bee pollen sample, E. rubra was used in subsequent pollen analyses.

Table 2. Chemical analysis of E. rubra pollen collected near (Llaima-experimental) and distant from (control) the Llaima Volcano.

<table>
<thead>
<tr>
<th>Bee pollen sample</th>
<th>Phenols (mg kg⁻¹)</th>
<th>FRAP (mM g⁻¹)</th>
<th>DPPH (µg g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llaima</td>
<td>2480.83 ± 1.2 a</td>
<td>61.3 ± 0.8 b</td>
<td>291.2 ± 0.88 b</td>
</tr>
<tr>
<td>Control</td>
<td>2410.82 ± 2.4 a</td>
<td>90.4 ± 0.9 a</td>
<td>321.6 ± 1.01 a</td>
</tr>
</tbody>
</table>

All values represent the mean ± SD for the Llaima (n=10) and control (n=5) samples. Different letters within columns indicate significant differences (Tukey’s test, P<0.05). DPPH, 1,1-diphenyl-2-picrylhydrazyl radical; FRAP, ferric reducing/antioxidant power.
Metal contents of *E. rubra* pollen

Metal content analyses revealed no significant differences between Llaima and control samples in terms of their Zn and Cr concentrations. However, the concentrations of Cu, Fe, Pb, and Cd were higher in Llaima samples, but the Mn concentrations were significantly lower in the Llaima samples than they were in their control counterparts (Table 3).

Table 3. Mineral contents (mg kg⁻¹) of *E. rubra* pollen collected near (Llaima-experimental) and distant (control) from the Llaima Volcano.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Bee pollen samples (mg kg⁻¹)</th>
<th>Llaima</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>10.7 ± 0.7 a</td>
<td>8.8 ± 0.2 b</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>82.3 ± 2.4 a</td>
<td>86.6 ± 0.2 a</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>42.5 ± 2.9 b</td>
<td>62.9 ± 0.3 a</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>76.5 ± 0.3 a</td>
<td>42.7 ± 1.4 b</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.02 ± 0.002 a</td>
<td>0.03 ± 0.001 a</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.02 ± 0.01 a</td>
<td>0.03 ± 0.01 a</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.03 ± 0.05 a</td>
<td>0.03 ± 0.01 a</td>
<td></td>
</tr>
</tbody>
</table>

All values represent the mean ± SD for the Llaima (n=10) and control (n=5) samples. Different letters within rows indicate significant differences (Tukey’s test, P<0.05).

Effects of fortification on the composition of Total Phenolic Compounds of *E. rubra* pollen

Four subsample groups (i.e., A1-D1) of *E. rubra* pollen collected near the Llaima Volcano were fortified with increasing amounts of certified reference material for Pb, Cd, and Cr. An additional subsample (i.e., E1) was left unfortified and used as the control. Compared with the E1 control, the final metal concentrations in the least (i.e., A1) and most (i.e., D1) fortified subsamples were as follow: A1 subsample: 177 times more Pb, 805 times more Cr, and 99 times more Cd; and D1 subsample, 705 times more Pb, 3220 times more Cr, and 392 times more Cd. In other words, the D1 subsample presented four times higher metal contents than the A1 subsample. The fortification results for all subsample groups are presented in Table 4.

Table 4. Final Pb, Cd, and Cr concentrations after the fortification of *E. rubra* pollen subsamples (A1-D1). The subsample group E1 was not fortified and was used as the control.

<table>
<thead>
<tr>
<th>Sample</th>
<th>E. rubra pollen (g)</th>
<th>Final concentration (µg kg⁻¹) (mg kg⁻¹ E. rubra pollen)</th>
<th>Pb</th>
<th>Cd</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.498</td>
<td>49.5</td>
<td>32.2</td>
<td>36.5</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>0.535</td>
<td>91.8</td>
<td>59.8</td>
<td>67.7</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0.503</td>
<td>146.3</td>
<td>95.4</td>
<td>107.7</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>0.497</td>
<td>197.3</td>
<td>128.8</td>
<td>145.2</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>0.959</td>
<td>23.0</td>
<td>21.0</td>
<td>30.0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Relationship between total phenolic compounds and the final concentration of metals in *E. rubra* pollen samples after fortification.
with an adjustment of 0.9343. Therefore, as metal concentrations increased, the antioxidant capacity of pollen subsamples decreased. Similarly, increased metal concentrations were correlated with decreased antiradical capacity (Fig. 3), with an exponential tendency presenting an adjustment of 0.9689.

Effects of fortification on phenolic profiles in E. rubra pollen

Using CE-DAD analysis, changes in the phenolic profiles of fortified *E. rubra* subsamples were detected (Table 5). The migration times of the distinct evaluated standards were displaced, specifically for naringenin, rutine, p-coumaric acid, ferulic acid, caffeic acid, and gallic acid.

Discussion

Species from the *Escallonia* family include small trees and bushes primarily distributed in mountainous and humid regions, with a range from Costa Rica to Tierra del Fuego in Argentina and Chile. Nevertheless, most *Escallonia* species are located within Andean zones in Argentina, Chile, and Peru (Morello et al., 2013). This family is widely reported between the 30° and 53° latitudes, which would account for the high prevalence of *E. rubra* pollen in the collected bee pollen samples (Table 1). *Escallonia rubra* pollen has also been reported in other nectar and honey samples collected from Andean zones in South America (Chalcoff et al., 2006; Mejías and Montenegro, 2012; Montenegro et al., 2010).

Table 5. Migration time of the phenolic profile for naringenin, rutine, p-coumaric acid, ferulic acid, caffeic acid, and gallic acid in *E. rubra* subsamples after fortification, as determined through capillary electrophoresis with diode-array detection. (A-E): non-fortified (E) and increasingly fortified from A to D.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Migration time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fortified samples with metals</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Naringenin</td>
<td>6.213</td>
</tr>
<tr>
<td>Rutine</td>
<td>6.977</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>8.889</td>
</tr>
</tbody>
</table>
Heavy metals are elements with a relative density higher than the density of water (Tchounwou et al., 2012). Some of these elements are considered micronutrients, but others, such as lead, cadmium, chromium, and mercury, can be toxic to plants at high levels of concentration, which are unable to metabolize these elements (Michalak, 2006). The primary toxic effects of heavy metals result from the production of reactive oxygen species and reactive nitrogen species (Bhaduri and Fulekar, 2012; Sytar et al., 2013). At a cellular level, heavy metals inhibit antioxidant enzymes, damage DNA, oxidize proteins and lipids, and cause a redox imbalance, among other effects (Nagajyoti et al., 2010; Tchounwou et al., 2012). Two types of cellular mechanisms are used to confront these negative effects. First, mechanisms using enzymes, such as superoxide dismutase, catalase, peroxidase, and reductase, are activated. Second, non-enzymatic mechanisms are used, which include some vitamins (e.g., A, E, and D), amino acids (e.g., proline), and carotenoids and flavonoids (Gill and Tuteja, 2010).

To determine whether the decreased antioxidant activity in the pollen samples was effectively due to the high heavy metal concentrations, fortification assays were performed with increasing amounts of certified reference materials in E. rubra pollen subsamples (Table 4). The previously observed pattern was effectively maintained: total phenol concentrations were the same between subsamples, but antioxidant and antiradical activities decreased exponentially as heavy metal concentrations increased (Figs. 2 and 3). These results were further corroborated via CE-DAD, which revealed changes in the phenolic profile as a result of variation in migration times for the distinct applied standards (Table 5). A plausible reason for the shift in migration times of pollen polyphenols in the metal-fortified samples might be complex formation between polyphenols and metals. Polyphenols are well known for their ability to chelate heavy metals such as Fe, Pb, and Cu.

By chelating heavy metals, polyphenols prevent free radical formation (antioxidant effect) by a possible Fenton-like reaction. Interaction of heavy metals with polyphenols/flavonoids involves the same hydroxyl groups that are involved in the FRAP or DPPH antioxidant assays. Complexation of these groups by metal ions renders them unavailable for hydrogen transfer from the phenolic OH group (followed by an electron transfer) in these assays, which is then observed as a decrease in antioxidant capability (Bautista et al., 2008; Mahal et al., 2005).

Crane (1984) was the first to propose using apiculture products as biomarkers for environmental contamination. Honeybees can be used to identify chemical disruptions in the environment via two signals: hive death and detection of residues of contaminated substances in apiculture products (Bargańska et al., 2016). A highly notable advantage in using apiculture products as biomarkers is the early and spatial detection of patterns for distinct
environmental contaminants (Van Der Steen et al., 2015). This strategy is founded on the fact that botanical origin is the primary conditioner for the chemical composition of apiculture products. Therefore, the plant species of origin dictates the presence of antioxidant compounds and subsequent bioactive traits, in addition to contaminants such as pesticides and heavy metals (Almeida-Muradian et al., 2005; Campos et al., 2008). Various studies exemplify the use of apiculture biomarkers in the detection of heavy metals (i.e., lead, cadmium, chromium, and nickel), pesticides, and other anthropogenic environmental contaminants, including aromatic hydrocarbons, perfluorinated compounds, and phthalates (Formicki et al., 2013; Gómez-Ramos et al., 2016; Porrini et al., 2003; Tuzen et al., 2007; Üren et al., 1998).

The effects of contaminants on human health are a growing concern. Although some elements are required in low doses to maintain biological functions, chronic exposure, even at low doses, can cause functional damage to distinct organs. This damage is in addition to the associations of exposure with diseases such as cancer, Parkinson’s, and Alzheimer’s (Jaishankar et al., 2014). Plants absorb heavy metals and other contaminants from a contaminated environment; however, because plants are unable to metabolize these compounds, bioaccumulation occurs (Liu et al., 2013; Michalak, 2006). Given that plants are one of the primary food sources for humans, heavy metal exposure through plants accounts for 90% of total metal intake, with only 10% occurring via dermal contact or inhalation (Khan et al., 2015).

The results of this study establish a foundation for future studies on bee pollen and other apiculture products. Continued research in this field is critical, because these products can be applied as a useful tool for studying the environmental effects of anthropogenic contamination, with the data collected used to aid in developing efficient monitoring and control protocols.

Disclosure statement

No potential conflict of interest was reported by the authors.

Acknowledgements

This work was supported by the Office of the Vice-Rector for Academic Affairs, Universidad Tecnológica Metropolitana under Grant VRAC-UTEM L216-11, awarded to Dr. Enrique Mejías.

Resumen

zonas cercanas y lejanas al volcán Llaima. El análisis melisopalinológico determinó que el polen de Escallonia rubra era la especie nativa más abundante presente en las muestras. De esta forma, el polen de E. rubra presente en las muestras seleccionadas en este estudio fue analizado mediante los siguientes métodos: ensayos colorimétricos para determinar la cantidad de compuestos fenólicos totales; ensayo del poder reductor/antioxidante del ión férrico (FRAP) para evaluar la actividad antioxidante; ensayo con 1,1-difenil-2-piridilhidrazilo (DPPH) para evaluar la actividad antirradicalaria y análisis del contenido de metales mediante espectroscopía de emisión óptica de plasma acoplado inductivamente (ICP-OES). Las muestras producidas en las proximidades del volcán Llaima mostraron mayores concentraciones de Cu y Fe y menores para Mn en comparación con las muestras control. Asimismo, la capacidad antioxidante y antirradicalaria fue menor en estas muestras. Estos valores fueron concordantes con los resultados obtenidos luego de efectuar los ensayos de fortificación de muestras de polen de E. rubra. En las muestras fortificadas con altas concentraciones de metales se observó un descenso significativo de la capacidad antioxidante y antirradicalaria. Del mismo modo, los tiempos de retención para los compuestos naringenina, rutina y ácido cafético analizados por Electroforesis Capilar (CE) mostraron desplazamientos en las muestras fortificadas. En conclusión, los resultados indican una correlación inversa entre el contenido de metales y las capacidades antioxidantes/antirradicalarias del polen apícola.

Palabras clave: Actividad antirradicalaria, antioxidantes, electroforesis capilar, fenoles, metales.

References

